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Abstract 

Previous studies have demonstrated the value of ideal 
electron-density histograms as targets for the correspond- 
ing histograms of experimental electron-density maps. 
The electron-density histogram makes use of density 
values as independent objects, and no relationship 
between them is taken into account. Extension to include 
the relationships between neighboring density values 
leads naturally to a multi-dimensional histogram defined 
as the joint frequency of the density values and their 
higher order derivatives. We show here that the multi- 
dimensional histogram including additional dimensions 
composed of the gradient magnitude and Laplacian of the 
density is minimally dependent on molecular folding and 
packing, and captures substantially more stereochemical 
information than the conventional electron-density 
histogram. The gradient histogram appears to be much 
more sensitive to phase errors than the conventional 
electron-density histogram. Potential uses of the multi- 
dimensional histogram include improved targets for 
density modification and more reliable figures of merit 
for evaluating correct phases. 

I. Introduction 

Prior information about the electron-density distribution 
provides a link between the amplitudes and phases of 
structure factors on which direct methods are founded 
(Bricogne, 1984; Hauptman, 1986; Karle, 1986; 
Woolfson, 1987). The most widely used information 
has been the non-negativity of electron density, as 
explicitly employed in the derivation of inequality 
relationships between structure factors (Harker & 
Kasper, 1948; Karle & Hauptman, 1950) and implicitly 
in maximum-entropy methods (Collins, 1978; Bricogne, 
1984, 1988). The more restrictive constraint that 
f p3(x)dv is a maximum was used in deriving the 
Cochran distribution (Cochran, 1952). The local shape or 
atomicity of molecular electron densities also gives rise 
to Sayre's equation (Sayre, 1952) which has proven 
useful in macromolecular phase extension and refine- 
ment (Sayre, 1974; Main, 1990; Zhang, 1993). 

In various density-modification methods, prior infor- 
mation about the electron-density distribution has been 
used for map improvement by actually replacing the 

value of a particular density, p, by a 'target' value, Pt, 
obtained from a prior expectation. These methods differ 
in the choice of the expected values. Examples include 
filtering the electron density such as Pmin < p,(r) < Pmax 
(Cannillo, Oberti & Ungaretti, 1983), and restraining the 
electron density locally to conform to criteria like 
Pt -- 3P 2 - 2P 3 (Collins, Brice, La Cour & Legg, 1976). 

The ideal electron-density histogram, which specifies 
not only permitted values for the electron density but also 
their frequencies (Lunin, 1988; Harrison, 1988; Zhang & 
Main, 1990a) provides a better modification target than 
those described above because it represents more of the 
prior chemical information. A distinguishing character- 
istic of the density histogram is that the probability of a 
particular density value occurring in the unit cell encodes 
some stereochemical information. Use of an ideal 
histogram as a target in macromolecular phase extension 
and refinement has shown promising results (Zhang & 
Main, 1990a,b; Zhang, 1993). A related indicator of the 
utility of the density histogram is that it also can serve as 
a figure of merit to retrieve correct phase sets in ab initio 
phasing of macromolecules (Lunin, Urzhumtsev & 
Skovoroda, 1990). 

The electron-density histogram is determined by the 
characteristic shape of a molecular electron-density 
distribution, which in turn depends on stereochemical 
features such as bond lengths and angles between atoms 
in the molecule. The electron-density histogram is 
insufficient to represent all these features uniquely, and 
is degenerate in the sense that many electron-density 
distributions can be constructed to fit a target histogram 
without necessarily having the correct molecular shape 
(Lunin et al., 1990). In this paper, a multi-dimensional 
histogram is proposed that provides a more comprehen- 
sive representation of stereochemical constraints on the 
electron-density distribution. The multi-dimensional 
histogram substantially reduces the degeneracy of the 
electron-density histogram, thereby providing more 
discriminating targets for density modification and 
figures of merit for detecting phase errors. 

2. The multi-dimensional histogram 

Stereochemical information is usually expressed as bond 
lengths and bond angles between atoms in an atomic 
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model. This information can be easily imposed as 
restraints on atomic positions during structure refine- 
ments (Brtinger, 1992; Tronrud, Ten Eyck & Matthews, 
1987; Hendrickson, 1985). However, it cannot be applied 
in this form to the electron-density distribution since the 
objects in the density distribution are not atomic 
positions but pixels of electron density. Nevertheless, in 
macromolecular structure determination, the character- 
istic geometrical shape of the electron density that 
provides a unique guide for the crucial step of model 
building, derives implicitly from the same bond lengths, 
bond angles and atom types. Thus, this characteristic 
geometrical shape expresses the stereochemical informa- 
tion. 

Here, we explore a representation of this characteristic 
geometrical shape which can be applied on the electron- 
density distribution p(r) within a molecular envelope and 
can be easily realized in computer algorithms. 

Ar  o, Ar~ and Z l r 2 ,  respectively. We define the 
three-dimensional histogram, egl(r 0, r~, r2), as the joint 
frequency of the electron densities found inside the 
bin [r 0 - (At0/2), r 0 + (At0/2); r~ -- (Ar~/2), 
r t + (Arl/2);  r 2 -- (At2/2), r 2 + (At2/2)], 

egl(r 0, r I , r 2) = [AV(r 0, r I , r2)]/(Ar0Arl At2). (2) 

egl(r 0, r~, r2) defined in (2) is convenient for practical 
computation since the geometrical properties ,O(ro), 
IVp(r0)l, V2p(r0) are always calculated on discrete grid 
points. However it depends, in the strict sense, on the 
grid and on the bin lengths used in the calculations. A 
more accurate form can be obtained by considering the 
limiting case that the number of grid points increase 
indefinitely and the bin lengths tend to zero, 

EGL(r  0, r I , r 2) -- [03V(r0, r t , r2)]/(OroOr 1 "c2). (3) 

2.1. Definition 

Geometrical shape at a particular position r 0 in an 
electron-density distribution is not completely defined by 
the electron-density value ,o(r0). Complementary infor- 
mation is provided by the derivatives Vp(r0), V2p(r0), 
V3p(r0), and so forth. Here, V is the gradient operator 
(Borden, 1983), 

o i 0 .  (1) 
' 

and its scalar products are written as V"+~= V". V. 
These derivatives are appropriate components to describe 
the stereochemical information in the electron-density 
distribution p(r). In the conventional electron-density 
histogram, only the density ,O(ro) is used. To capture 
more stereochemical information, the derivatives should 
be taken into account. 

There is no restriction on the number of components 
used to construct the multi-dimensional histogram. The 
more components used, the more stereochemical infor- 
mation can be encoded in the multi-dimensional 
histogram. However, in consideration of the computa- 
tional costs and since the low-order derivatives carry 
most of the information about the characteristic shape of 
the molecular electron-density distribution, we will 
confine ourselves to the density p(ro) and its two lowest 
order derivatives Vp(ro) and V2p(ro). Higher dimen- 
sional histograms can be obtained in a similar manner by 
including more derivatives. Since an appropriate repre- 
sentation of stereochemical information should be 
independent of molecular orientation, we used the 
gradient magnitude, IVP(ro) I to replace the gradient 
Vp(ro) in constructing the multi-dimensional histogram. 

Suppose that V(r o, r~, r2) is the real-space volume 
taken by the electron densities with ,O(ro) = r o, 
[Vp(ro)[ = r I, V2p(ro) = r 2 and that the values of these 
scalar functions are divided into bins with the lengths 

2.2. Projections 

Several useful one- and two-dimensional histograms 
can be obtained by projecting the histogram EGL onto 
the corresponding sub-space. Projections of the EGL 
onto corresponding components give rise to the follow- 
ing one-dimensional histograms. 

The conventional electron-density histogram, which 
has been used in macromolecular electron-density 
modification applications (Zhang & Main, 1990a; 
Zhang, 1993; Lunin, 1993), 

E(ro) = f f EGL(r  o, r,, r2)dr , d r  2. (4) 

Gradient histogram, 

G(r  I) = f f EGL(r  o, r I , r2)dr o dr  2. (5) 

Laplacian histogram, 

L(r2) = f f EGL(ro, r,, r2)dr o dr. .  (6) 

Projections along the same components give rise to the 
following two-dimensional histograms. 

Density-gradient histogram, 

EG(r  o, r I ) = f EGL(r  0, "t" I , " t ' 2 ) d r  2. (7) 

Density-Laplacian histogram, 

EL(r  o, r 2) = f EGL(r  0, r I , r2)dr  I . (8) 

Gradient-Laplacian histogram, 

GL(r  I , r 2) = f EGL(r  0, r I , r2)dr 0. (9) 

Since p(r0), IVp(ro) I and V2p(ro) each characterize 
different properties of the molecular shape, they reflect 
somewhat independent stereochemical information. 
Therefore, a multi-dimensional histogram always in- 
cludes more stereochemical information than do its 
projections and will, consequently, be more sensitive to 
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phase errors than its projections, as we will demonstrate 
below. 

2.3. Independence of molecular conformation 

A necessary requirement for an appropriate represen- 
tation of stereochemical information is that it must be 
independent of  molecular conformation. To show that the 
histogram E G L  satisfies this criteria, we rewrite (3) as, 

EGL(ro,  r I , r2) = (1/'r0)[a3N('r0, "t- 1 , r2)]/(aroOr I Or2), 

here N( r  0, l- l, r2) is the 
V(ro, r~, r2), 

(10a) 

number of electrons in 

N ( r  o, r I , r2) = f p(r) dr. (lOb) 
v(rll, r I ,r2 ) 

For an ideal electron-density distribution p(r), the 
molecular volume V r can be divided, by selecting an 
appropriate electron-density threshold #a, into two 
regions (Fig. 1): Vno,bona(r0, r l ,  r2) 6 {to < #a} and 
Vcovalent('~'o, z" l, "r2) E {r o > #a} such that the latter is 
occupied by the density, #covalent(r), from main-chain 
and side groups of the molecule and the former by the 
density, #nonbond(r), from nearby residues that interact 
with each other either by van der Waais contacts or 
hydrogen bonds. Therefore, (10) can be written as, 

E G L ( r  0, r , ,  "["2) "-- ( l / t o )  {[oq3Nnonbond('r0, rl, 15"2)] 

-- (Oro0rl0r2) }, r 0 < p~, (1 l a )  

EGL(ro,  rl ,  z'2) = ( l / t o )  {[~Ncovalent(ro, z" l , r2) ] 

-- (3r03rt3r2)}, r0 > Pu, (1 lb) 

#nonbond(r) therein depends on the atom types and 
packing configurations of neighboring, but non-bonded 
atoms. However, Nnonbond(Z" 0, Z'l, l"2) won' t  vary greatly 
for different proteins because the atoms of O, C and N 
which are the principle components of a protein have 
similar atom types, and because globular proteins have in 
common a close-packed configuration (Chothia, 1975; 
Richards, 1977; Ponder & Richards, 1987; Harpaz, 
Gerstein & Chothia, 1994). Moreover, the feature of 
local packing is smeared by the spatial average in (1 lc). 
Therefore, from ( l l a ) ,  E G L  is also approximately 
irrelevant to molecular conformation for r 0 < Pa. 

We have shown that the histogram E G L ( r  0, r~, r2) is 
determined largely by the chemical composition of a 
molecule and should be relatively independent of the 
molecular conformation. In the following, we will verify 
these conclusions using simulated models. 

3 .  T e s t s  a n d  d i s c u s s i o n  

In the tests, the electron density #(r) was calculated using 
the FFT program of CCP4 (Collaborative Computational 
Project, Number  4, 1994). The magnitude of the gradient 
IVp(r)l and the Laplacian V2p(r) are also calculated 
using the FFT program with the Fourier coefficients 
modified accordingly, 

IVp(r)l = { [3p(r) /ax]  2 + [3p(r)/ay] 2 

+ [ap(r)/az]2},/2, (12a) 

[ap(r)/ax] = -2rr ~ i(a,h)Vhu 
hkl 

x exp[-2rr i (hx,  + ky~ + lz,)], (12b) 

Nnonbond(T 0, "r I , "t'2) = 

f 
Vnonbond(ro,rl ,r2) 

Pnonbond(r) dr,  r# < G ,  

(1 lc) 

Ncovalent(r0, Zl, "r2) = 

f 
Vcovalent (to, rl ,r2) 

#covalent(r) dr,  r o >_ p~. 

( l l d )  

Since the spatial integration ( l l d )  discards the 
information about molecular conformation, 
Ncovalent('r0, rl ,  "/'2) depends on only the covalent struc- 
ture, i.e. covalent bonds and angles between atoms in the 
molecule, represented by #covalent(r) and is independent 
of molecular conformation. Therefore, from (1 lb), E G L  
is determined by chemical composition of a molecule 
and is independent of molecular conformation for 

"to > G .  
In contrast, Nnonbond(' t '0,  Z'l , ' t '2) is determined by 

molecular packing as shown in (1 l c). The shape of 

covalent 
Vnonbond i ; 

, . :  / /  

Fig. 1. Schematic drawing of Vnonbon d and V~ovatent. The molecular 
volume is divided into two regions, V, onb,,,d (p < p,,) and Vco,.~le, u 
(P >-~ Pa)" Vcovalent iS the volume occupied by main-chain and side 
groups of the molecule and Vnonbo,~d is contributed from nearby 
residues that interact with each other either by van der Waals contacts 
or hydrogen bonds. The molecular model is taken from the crystal 
s t ruc ture  o f  cy t id ine  d e a m i n a s e  (Bet ts ,  Xiang ,  Short ,  W o l f e n d e n  & 
C a n e r ,  1994). 
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[0p(r)/Oy] = - 2 z r  ~ i(a2h + b2k)Fhk t 
hkl 

x e x p [ - 2 z r i ( h x  I + ky I + lZl)], (12c) 

features at the higher resolution. Thus, if the histograms 
prove identical at this resolution, the same will be true at 
lower resolution. 

[Op(r)/Oz] = -2zr ~ i(a3h + b3k + c31)Fhk t 
hkl 

× e x p [ - 2 z r i ( h x  I + ky I + lz l)], (12d)  

V2p(r) = --4rr 2 ~ DhktFhk/ 
hkl 

× exp[--2rri(hXl + kYl + lz I )], (13a)  

ohk, = + + a )h 2 + + b )k 2 + 2 

+ 2(a2b2 + a3b3)hk + 2a3c3hl + 2b3c3kl, (13b) 

where the elements of orthogonalization matrix are 
a I = a* sin(/~*) sin(y), a 2 = - a *  sin(~*) cos(y),  a 3 = 
a* cos(/~*), b 2 = b* sin(a*), b 3 = b* cos(or*) and c 3 = c*. 
The a*, b*, c*, c~*, /~* and y* are reciprocal 
cell parameters and x~, Yl and z~ crystallographic 
coordinates. The orthogonal axes x, y and z were chosen 
such that x along the crystallographic axis a and z along 
C * .  

3.1. Independence of  molecular conformation 

To verify the insensitivity of histograms to molecular 
conformation, we built three different secondary struc- 
tures artificially from the same 16-residue peptide. For 
simplicity we only test the one-dimensional histograms 
E, G and L. 

An c~-helix of  16 residues taken from the cytidine 
deaminase crystal structure (Betts, Xiang, Short, 
Wolfenden & Carter, 1994) was used as one of the test 
models. The other models, a /~-strand and a loop were 
built from the same residues to generate different 
conformations. The geometry of each model was refined 
with REFI in FRODO (Jones, 1985). An artificial space 
group P3121 and unit cell of  a = 60.0, b - - 6 0 . 0 ,  
c = 75.0 A, ot = 90.0,  /~ = 90.0 and y = 120.0 ° were 
used throughout the calculation. The molecular envel- 
opes i.e. the Vr's within which the histograms were 
evaluated were calculated from the corresponding 
structure models. To evaluate the influences of the 
stereochemical information on the histograms, random 
atom structure models were also generated by assigning 
random positions to the atoms of the 16 residues such 
that the atomic centers remained inside the corresponding 
molecular envelopes of  the different secondary struc- 
tures. Their molecular envelopes were then determined 
from the corresponding random atom models. 

All the calculations were performed at a resolution of 
2.0,4, which is often attainable for the X-ray diffraction 
from protein crystals, and which includes the most 
crucial reflections for the initial phase determination. The 
histograms depend on the resolution of  the electron- 
density distribution and are more sensitive to structural 
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Fig. 2. Comparisons between one-dimensional histograms calculated 
from a random atom structure and the secondary  structures o f  an a -  

h e l i x ,  a /3-strand and a l oop  at 2.0,~, reso lut ion .  The  secondary  
structures cons i s t  o f  the s a m e  16 res idues  wi th  standard stereo- 
c h e m i c a l  g e o m e t r y .  The  random atom structure is generated  us ing  the 
s a m e  a toms  in the 16 res idues .  
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The electron-density histograms (Fig. 2a) of the three 
secondary-structure models are almost the same in the 
high-density region and are different in the low-density 
region. The low-density region is contributed by electron 
densities from Vnonbon d and, therefore, reflects the 
different molecular conformations. The high-density 
region is contributed by electron densities from the 
volume Vcov.~len, and thus, represents the stereochemical 
properties of covalent bonds and angles. 

Similarly, the gradient histograms (Fig. 2b) are almost 
identical for the different secondary structures throughout 
the entire range of the gradient magnitude, IVp(r)[, 
except where its value approaches zero. The largest 
gradient values derive from the region close to inflection 
points in the density map and these all lie at some small 
distance from atomic centers and from the axes of 
chemical bonds between them within Vcovalent. Therefore, 
these high values are derived from the atom types and 
covalent structure of the molecule. The low gradient 
values are contributed mainly by electron density in the 
volume Vnonbon d and thus represent information about 
packing interactions. 

The Laplacian histograms for the three secondary 
structures are shown in Fig. 2(c). They too are much the 
same except for a small difference observed in the strong 
peak located close to 0, a region also contributed mostly 
by electron densities in Vnonbond" This peak represents 
contributions from the molecular folding. The long tail in 
the negative region results mainly from the electron 
density in Vcovalent near or between atomic centers, and 
thus reflects stereochemical information about covalent 
bonds and angles. 

In contrast, the histograms of the random atom 
structures differ significantly everywhere from those of 
the corresponding secondary structures. The histograms 
from the random atom model generated inside the helix 
envelope are also shown in Fig. 2. The large discrepan- 
cies arise from the fact that the secondary structures have 
correct bond lengths and angles whereas the random 
atom structure does not. It should be noted that the most 
significant deviations occur in the gradient histogram 
which differs considerably from the histograms of the 
secondary structures not only at small gradient values but 
also at the region of medium values. This is because the 
gradient histogram encodes much more stereochemical 
information than either the electron density or the 
Laplacian histograms, as discussed below. 

In summary, histograms calculated from different 
conformations with different secondary structures are 
almost the same in regions contributed by electron 
densities in Vcovalent, and differ slightly in regions to 
which electron densities in Vnonbon d make major 
contributions. In contrast to the relative independence 
from molecular conformation, the proper stereochemical 
bonding between atoms has significant effects on the 
histograms. These observations indicate that the histo- 
grams defined here are mainly determined by stereo- 

chemical properties of the covalent structure of 
polypeptides, and relatively independent of molecular 
conformations. 

3.2. Sensitivity to phase errors 

The usefulness of the histograms in density modifica- 
tion and ab initio phasing applications depends on their 
sensitivity to phase errors. The electron-density histo- 
gram has shown some phase-discriminative capability, as 
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Fig. 3. One-dimensional histograms calculated for cyclophilin A at 
3.5 ~, resolution using MIR phases and phases with 0, 45 and 90 ° 
random phase errors. 



indicated by its successful application in the phase 
extension and refinement for macromolecules (Zhang & 
Main, 1990b). The new histograms we proposed here 
encode more stereochemical information than the 
electron-density histogram alone and should be more 
sensitive to phase errors. 

The phase sensitivity of the new histograms was tested 
using 3.5 A X-ray diffraction data of cyclophilin A (Ke, 
Zydowsky, Liu & Walsh, 1991). Error-free histograms 
were calculated from the experimental amplitudes IFol 

(1) The density-gradient histogram EG 

and phases tp~ obtained from the cyclophilin A structure 
model. Simulated-error histograms were generated using 
the same amplitudes IFol and the phases tpc + tp~ with the 
random errors ~r introduced. The real-error histograms 
were also calculated using IFol and MIR phases. All the 
histograms were evaluated within the same molecular 
envelope determined from the refined model. 

To give a quantitative measure of the sensitivity of the 
histograms to phase errors, we define the R factor of 
histograms as, R h = ~ IP-Pml/~f]~P,,,, where p is the 

___> gradient magnitude 
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Fig. 4. Two-dimensional histograms calculated for cyclophilin A at 3.5,~ resolution using (a) error-free phases, (b) MIR phases and (c) random 
phases. 
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histogram of the electron-density distribution in question 
and p,,, the error-free histogram. R h measures differences 
between a histogram and the error-free histogram and, by 
implication, the phase differences between them if the 
amplitudes of structure factors are specified as in this 
test. 

The one-dimensional histograms, E, G and L are 
shown in Fig. 3. The electron-density histogram E (Fig. 
3a) with 90 ° random phase errors is nearly symmetric. 
As phase errors decrease, the peak gets lower and 
broader with a tail extending to the region of high 
electron density. Similarly, in the gradient histogram G 
(Fig. 3b) and the Laplacian histogram L (Fig. 3c), the 
peaks become lower and broader with phase errors 
reduced and concomitantly the tails extend to the region 
where the densities in Wcovalent makes major contribu- 
tions. Among the three types of histograms, the gradient 
histograms G show the largest deviation between the 
error-free and the completely random phases, which is 
also indicated by the R h in Fig. 5. The histograms E, G 
and L calculated from MIR phases are all located 
between the corresponding histograms with 45 ° and 90 ° 
phase errors. The average phase errors of the MIR phases 
would be estimated, based on the histograms, to be a 
little more than 45 ° . 

The two-dimensional histograms, EG, EL and GL are 
shown in Fig. 4. A common feature is that the peak 
becomes broader, less condensed and more asymmetric 
as the phase errors decrease. This is correlated with the 
changes in one-dimensional histograms mentioned 
above. 

The variation induced in R h by phase errors indicates 
the phase sensitivity of the corresponding histogram. The 
Rh'S calculated for the histograms are compared as a 
function of average phase error in Fig. 5. They all 
decrease monotonically as phase errors are reduced from 
90 to 0 °. In the case of one-dimensional histograms, the 
variations are 0.16, 0.36 and 0.17, respectively, for the 
histograms, E, G and L when phase errors increase from 
0 to 90 °. It is interesting that the gradient histogram G 
once again shows significantly more phase sensitivity 
compared to the density histogram E and the Laplacian 
histogram L as suggested by the comparison between the 
random atom structure and the secondary structures in 
§3.1 above. 

The two-dimensional histograms have increased 
sensitivity to phase errors, and, correspondingly the 
variations for those involving the gradient, the EG (0.43) 
and GL (0.42), are greater than that for the EL histogram 
(0.29). The density-gradient histogram EG gives a higher 
variation (0.43) than its projections E (0.16) and G 
(0.36), and thus is more sensitive to phase errors. 
Similarly, the density-Laplacian histogram EL and the 
gradient-Laplacian histogram GL have higher phase 
sensitivity than their corresponding projections, the one- 
dimensional histogram E, G and L alone. The three- 
dimensional histogram EGL shows even larger phase- 

error dependent variation, 0.49 compared to those of the 
two-dimensional projections EG (0.43), EL (0.29) and 
GL (0.42). This indicates that the components of the 
histograms, the density ,o(r), the magnitude of gradient 
IVp(r)l and Laplacian V2p(r) encode somewhat inde- 
pendent stereochemical information. Therefore, the phase 
sensitivity of the multi-dimensional histogram can be 
enhanced by including additional components since these 
components are at least partially independent. 

An important feature in Fig. 5 is that the phase-error 
dependencies for histograms containing the gradient 
magnitude are steeper than for those which do not. The 
observation that the gradient histogram is more sensitive 
both to stereochemical constraints and to phase errors 
than either the density or the Laplacian histograms, 
suggests that the gradient makes the most significant 
contributions to the phase sensitivity of the histograms 
containing it. Since the gradient measures differences 
between neighboring density values, it is more sensitive 
to detailed geometrical features of the electron-density 
distribution than is the density itself or the Laplacian. 
Therefore, the enhanced phase sensitivity of the 
histograms containing the gradient magnitudes arises 
probably because the gradient captures more stereoche- 
mical information owing to the higher molecular shape 
sensitivity compared to either the density or the 
Laplacian. 
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Fig. 5. Phase sensitivity o f  histograms: R h plotted as a function o f  
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error-free histogram. All the histograms were calculated at 3.5 A 
resolution. 
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4. Concluding remarks 

The multi-dimensional histogram proposed here repre- 
sents stereochemical properties encoded in the shape of 
the macromolecular electron-density distribution. It 
represents much more information than the electron- 
density histogram previously developed (Lunin, 1988; 
Zhang & Main, 1990b) since it reflects not only the 
frequency of a particular electron-density value but also 
its relationship with the densities of its neighbors. It is 
mainly dependent on chemical composition of a 
molecule and minimally dependent on molecular folding 
and packing. 

The multi-dimensional histogram can be divided, as 
shown in the tests, into regions that represent stereo- 
chemical information about covalent bonds, bond angles 
and atom types, and regions that depend on molecular 
folding and packing. Thus, the former regions of the 
multi-dimensional histogram can be calculated accurately 
from the composition of a molecule and can serve as 
reliable targets in histogram matching. The latter regions 
can be estimated from known structures with little loss in 
precision since no dramatic changes would be expected 
between different macromolecular structures as discussed 
above. Therefore, they also can be used as targets but 
they should be down-weighted. 

The multi-dimensional histograms are significantly 
more sensitive to phase errors than is the conventional 
electron-density histogram alone. Phase sensitivity can 
be enhanced by including higher order derivatives into 
the multi-dimensional histogram. The gradient histogram 
has much greater sensitivity to phase errors than does the 
electron-density histogram; thus, it should serve as a 
basis for much better figure of merit for selecting correct 
phase sets than the electron-density histogram in multi- 
solution phase determinations (Lunin et al., 1990). 

Like the electron-density histogram, the multi-dimen- 
sional histogram can be easily realized in computer 
algorithms. The calculations of the gradients of an 
electron-density map require three Fourier transforma- 
tions, as indicated in (12). the efficiency of the 
calculation can be enhanced by using the fast Fourier 
transformation (FVI') algorithm (Gentleman & Sande, 
1966; Ten Eyck, 1973; Brianger, 1989; An, Lu, Prince & 
Tolimieri, 1992; Bricogne, 1993). The Laplacian calcu- 
lations are rather simple, requiring just one FFT [(13)]. It 
should be noted that it is possible to use higher 
dimensional histograms but with more computing costs. 
Since the even-order derivatives can be calculated by 
only one FFT, they could be used to construct the multi- 
dimensional histogram with increasing computing 
efficiencies. 

Further studies on the calculation of the multi- 
dimensional histogram from macromolecular chemical 
compositions and similar structures and its application to 
improve macromolecular electron-density maps are 
under investigation. 

One of the authors, Shibin Xiang, thanks Dr Lee 
Kuyper for reviewing the paper and kind suggestions, 
and Dr Hengming Ke for providing the cycophilin A 
data. 

References 

An, M., Lu, C., Prince, E. & Tolimieri, R. (1992). Acta Cryst. 
A48, 415-418. 

Betts, L., Xiang, S., Short, S. A., Wolfenden, R. & Canner, C. 
W. Jr (1994). J. Mol. Biol. 235, 635-656. 

Borden, S. R. (1983). A Course in Advanced Calculus. New 
York: North Holland. 

Bricogne, G. (1984). Acta Cryst. A40, 410-445. 
Bricogne, G. (1988). Acta Cryst. A44, 517-545. 
Bricogne, G. (1993). Fourier Transforms in Crystallography: 

Theory, Algorithms, Applications, in International Tables for 
Crystallography, Vol. B, edited by U. Shmueli, pp. 23-106. 
Dordrecht: Kluwer Academic Publishers. 

Brtinger, A. (1989). Acta Cryst. A45, 42-50. 
Brtinger, A. (1992). X-PLOR Version 3.0 Manual. Yale 

University, New Haven, CT, USA. 
Cannillo, E., Oberti, R. & Ungaretti, L. (1983). Acta Cryst. 

A39, 68-74. 
Chothia, C. (1975). Nature (London), 254, 304-308. 
Cochran, W. (1952). Acta Cryst. 5, 65-67. 
Collaborative Computational Project, Number 4 (1994). Acta 

Cryst. D50, 760-763. 
Collins, D. M. (1978). Acta Cryst. A34, 533-541. 
Collins, D. M., Brice, M. D., La Cour, T. F. M. & Legg, M. J. 

(1976). Crystallographic Computing Techniques, pp. 330- 
335. Copenhagen: IUCr/Munksgaard. 

Gentleman, W. M. & Sande, G. (1966). Proceedings of the Fall 
Joint Computer Conference 1966, IEEE Computer Society, 
pp. 563-578. 

Harker, D. & Kasper, J. S. (1948). Acta Cryst. 1, 70-75. 
Harpaz, Y., Gerstein, M. & Chothia, C. (1994). Structure, 2, 

641--649. 
Harrison, R. W. (1988). J. Appl. Cryst. 21,949-952. 
Hauptman, H. (1986). Science, 233, 178-183. 
Hendrickson, W. A. (1985). Methods Enzymol. 115, 252-270. 
Jones, A. (1985). Methods Enzymol. 115, 157-171. 
Karle, J. (1986). Science, 232, 837-843. 
Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 181-187. 
Ke, H. M., Zydowsky, L. D., Liu, J. & Walsh, C. T. (1991). 

Proc. Natl Acad. Sci. USA, 88, 9483-9487. 
Lunin, V. Y. (1988). Acta Cryst. A44, 144-150. 
Lunin, V. Y. (1993). Acta Cryst. D49, 90-99. 
Lunin, V. Y., Urzhumtsev, A. G. & Skovoroda, T. P. (1990). 

Acta Cryst. A46, 540-544. 
Main, P. (1990). Acta Cryst. A46, 507-509. 
Ponder, J. W. & Richards, F. M. (1987). Cold Spring Harbor 

Symp. Quant. Biol. LII, 421-428. 
Richards, F. M. (1977). Ann. Rev. Biophys. Bioeng. 6, 151-176. 
Sayre, D. (1952). Acta Cryst. 5, 60-65. 
Sayre, D. (1974). Acta Cryst. A30, 180-184. 
Ten Eyck, L. F. (1973). Acta Cryst. A29, 183-191. 
Tronrud, D., Ten Eyck, L. F. & Matthews, B. W. (1987). Acta 

Cryst. A43, 489-501. 
Woolfson, M. M. (1987). Acta Cryst. A43, 593-612. 
Zhang, K. Y. J. (1993). Acta Cryst. D49, 213-222. 
Zhang, K. Y. J. & Main, P. (1990a). Acta Cryst. A46, 377-381. 
Zhang, K. Y. J. & Main, P. (1990b). Acta Cryst. A46, 41-46. 


